1. Pittore B, Al Safi W, Jarvis SJ. Concha bullosa of the inferior turbinate: an unusual cause of nasal obstruction. Acta Otorhinolaryngol Ital 2011;31:47-9.
4. Ozcan KM, Selcuk A, Ozcan I, Akdogan O, Dere H. Anatomical variations of nasal turbinates. J Craniofac Surg 2008;19:1678-82.
6. Shetty S, Al-Bayatti S, Alam MK, Al-Rawi NH, Kamath V, Tippu SR, et al. Analysis of inferior nasal turbinate volume in subjects with nasal septum deviation: a retrospective cone beam tomography study. PeerJ 2022;10:e14032.
20. Chen MC, Ball RL, Yang L, Moradzadeh N, Chapman BE, Larson DB, et al. Deep learning to classify radiology free-text reports. Radiology 2018;286:845-52.
21. Parmar P, Habib AR, Mendis D, Daniel A, Duvnjak M, Ho J, et al. An artificial intelligence algorithm that identifies middle turbinate pneumatisation (concha bullosa) on sinus computed tomography scans. J Laryngol Otol 2020;134:328-31.
23. Herman S. Computed tomography contrast enhancement principles and the use of high-concentration contrast media. J Comput Assist Tomogr 2004;28 Suppl 1:S7-11.
24. Abba SI, Yassin MA, Mubarak AS, Shah SM, Usman J, Oudah AY, et al. Drinking water resources suitability assessment based on pollution index of groundwater using improved explainable artificial intelligence. Sustainability 2023;15:15655.
25. Skodras AN. Discrete wavelet transform: an introduction. Hellenic Open University: Technical Report HOU-CS-TR-2003-02-EN; 2003.
26. Arbelaez P, Maire M, Fowlkes C, Malik J. Contour detection and hierarchical image segmentation. IEEE Trans Pattern Anal Mach Intell 2011;33:898-916.
27. Howard AG, Zhu M, Chen B, Kalenichenko D, Wang W, Weyand T, et al. Mobilenets: efficient convolutional neural networks for mobile vision applications. arXiv [Preprint] 2017 Apr 17 [cited 2024 May 20].
https://doi.org/10.48550/arXiv.1704.04861.
29. Ozsoz M, Mubarak A, Said Z, Aliyu R, Al-Turjman F, Serte S. Deep learning-based feature extraction coupled with multiclass SVM for COVID-19 detection in the IoT era. Int J Nanotechnol 2021;1:1-18.
30. He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, USA; 2016, p. 770-8.
36. Ozbay S, Tunc O. Deep learning in analysing paranasal sinuses. Elektron Elektrotech 2022;28:65-70.